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Abstract
The steady mixed convection boundary layer flow along a vertical cylinder
with prescribed surface heat flux is investigated in this study. The free stream
velocity and the surface heat flux are assumed to vary linearly with the distance
from the leading edge. Both the case of the buoyancy forces assisting and
opposing the development of the boundary layer are considered. Similarity
equations are derived, their solutions being dependent on the mixed convection
parameter, the curvature parameter, as well as of the Prandtl number. Dual
solutions are found to exist for both buoyancy assisting and opposing flows.
It is also found that the boundary layer separation is delayed for a cylinder
compared to a flat plate.

PACS numbers: 47.15.Cb, 41.20.Gz, 44.20.+b, 47.10.A−

1. Introduction

The similarity solutions for combined forced and free convection (mixed convection) flow
and heat transfer about a nonisothermal body subjected to a nonuniform free stream velocity
were discussed by Sparrow et al [1]. They showed that similarity solutions are found to exist
when the free stream velocity and the surface temperature vary as xm and x2m−1, respectively,
where x measures the distance from the leading edge and m is a constant. The parameter
controlling the relative importance of the free and forced convection is Gr/Ren, where Gr is
the Grashof number, Re is the Reynolds number and n is a constant, which depends on the
flow configuration and the surface heating conditions, and is called the buoyancy or mixed
convection parameter. This problem was then extended by Merkin and Mahmood [2] to a
prescribed wall heat flux case. They found that similarity solutions are possible if the free
stream velocity and the wall heat flux vary like xm and x(5m−3)/2, respectively. Merkin and
Mahmood [2] analyzed the solutions in terms of the buoyancy parameter and reported the
existence of dual solutions for the buoyancy opposing flow (free stream and buoyancy forces
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Figure 1. Physical model and the coordinate system (assisting flow).

in the opposite directions). Almost at the same time as [2], Ramachandran et al [3] considered
a similar problem but for m = 1, and they also found that dual solutions exist for the buoyancy
opposing flow case. Both prescribed wall temperature and prescribed wall heat flux were
considered in [3].

The existence of dual solutions for a certain range of buoyancy parameter was also reported
by Wilk and Bramley [4], Devi et al [5], Lok et al [6] and quite recently by Ishak et al [7].
Ingham [8] is probably the first to find dual solutions for the assisting flow case and Ridha [9]
for both the opposing and assisting flows. The paper by Ridha [9] showed that dual solutions
exist in the opposing flow regime and they continue into that of the assisting flow regime, i.e.
when the buoyancy force acts in the same direction as the inertia force.

The present study considers the mixed convection flow and heat transfer along a vertical
cylinder with prescribed surface heat flux. The surface heating condition is different from
those prescribed wall temperature cases considered by Mahmood and Merkin [10]. As for the
flat-plate case mentioned above, we show the existence of dual similarity solutions for both
buoyancy assisting and opposing flows. When the curvature parameter is absent, the present
problem reduces to the flat-plate case considered by Ramachandran et al [3] with which the
results can be compared.

2. Problem formulation

Consider a semi-infinite vertical cylinder with radius a placed in a viscous and incompressible
fluid of ambient temperature T∞, as shown in figure 1. It is assumed that the surface of the
cylinder is subjected to a variable heat flux qw(x), and there is a free stream velocity U(x)

flowing over the cylinder, and that the buoyancy force can act in the same direction as the flow
(assisting flow) or can act in the opposite manner (opposing flow). Under these assumptions,
along with the usual boundary layer and Boussinesq approximations, the governing equations
are (see [10])

∂

∂x
(ru) +

∂

∂r
(rv) = 0, (1)
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where x and r are coordinates measured along the surface of the cylinder and in the radial
direction, respectively, with u and v being the corresponding velocity components. Further, T
is the temperature in the boundary layer, g is the acceleration due to gravity, ν is the kinematic
viscosity coefficient, β is the thermal expansion coefficient, and α is the thermal diffusivity.
The appropriate boundary conditions are

u = 0, v = 0, k
∂T

∂y
= −qw(x) at r = a,

u → U(x), T → T∞ as r → ∞.

(4)

Stewartson [11] showed that the boundary layer flow on a stationary circular cylinder
admits similarity solution if the free stream U(x) varies linearly along the axial coordinate.
Merkin and Mahmood [2] then showed that similarity solution for the thermal field is possible
if the surface heat flux varies linearly in the axial direction, like the free stream. Following
Stewartson [11], and Merkin and Mahmood [2], we assume that U(x) and qw(x) are of the
form

U(x) = c1

(
x

�

)
, qw(x) = c2

(
x

�

)
, (5)

where c1 and c2 are constants, and � is a reference length scale. We look for similarity solutions
of equations (1)–(3), subject to the boundary conditions (4), by writing (see [2, 10])

η = r2 − a2

2a

(
U

νx

)1/2

, ψ = (Uνx)1/2af (η),

T = T∞ +
qw

k

(
νx

U

)1/2

θ(η),

(6)

where η is the similarity variable, ψ is the stream function defined as u = r−1∂ψ/∂r and
v = −r−1∂ψ/∂x, which identically satisfies equation (1), and k is the thermal conductivity.
By defining η in this form, the boundary conditions at r = a reduce to the boundary conditions
at η = 0, which is more convenient for numerical computations. From transformation (6), we
obtain

u = Uf ′(η) and v = −a

r

(νc1

�

)1/2
f (η), (7)

where primes denote differentiation with respect to η. Substituting (6) into equations (2) and
(3), we obtain the following ordinary differential equations:

(1 + 2γ η)f ′′′ + 2γf ′′ + ff ′′ + 1 − f ′2 + λθ = 0, (8)

(1 + 2γ η)θ ′′ + 2γ θ ′ + Pr(f θ ′ − f ′θ) = 0, (9)

subject to the boundary conditions (4) which become

f (0) = 0, f ′(0) = 0, θ ′(0) = −1,

f ′(η) → 1, θ(η) → 0 as η → ∞,
(10)

where γ is the curvature parameter, λ is the buoyancy or mixed convection parameter, and Pr

is the Prandtl number defined respectively as

γ =
(

ν�

c1a2

)1/2

, λ = gβc2ν
1/2�3/2

kc
5/2
1

= Gr

Re5/2
, P r = ν

α
, (11)
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Table 1. Values of f ′′(0) for different values of Pr when λ = 1 and γ = 0 (flat plate).

Ramachandran Present results

Pr et al [3] First solution Second solution

0.7 1.8339 1.8339 1.2217
1 – 1.7338 1.0218
7 1.4037 1.4037 −0.5357
10 – 1.3712 −0.6057

Table 2. Values of 1/θ(0) for different values of Pr when λ = 1 and γ = 0 (flat plate).

Ramachandran Present results

Pr et al [3] First solution Second solution

0.7 0.7776 0.7776 0.9671
1 – 0.8780 0.7768
7 1.6912 1.6912 −1.5766
10 – 1.9067 −1.9913

with Gr = gβc2�
4/(kν2) and Re = c1�/ν being the Grashof and Reynolds numbers,

respectively. We note that λ > 0 corresponds to assisting flow (free stream and buoyancy
forces in the same direction) and that λ < 0 corresponds to opposing flow (free stream and
buoyancy forces in the opposite directions).

The main physical quantities of interest are the values of f ′′(0), being a measure of the
skin friction, and the non-dimensional surface temperature θ(0). Our main aim is to find how
the values of f ′′(0) and θ(0) vary in terms of the parameters γ and λ.

3. Results and discussion

The system of equations (8)–(10) has been solved numerically for some values of the buoyancy
parameter λ and curvature parameter γ , while the Prandtl number Pr is fixed to be unity
(P r = 1), except for comparisons with previously reported cases. We expect our findings to
be qualitatively similar for other values of Pr of O(1). The nonlinear ordinary differential
equations (8)–(10) have been solved by two different methods, namely the Keller-box method,
described in [12], and the Runge–Kutta method with the shooting technique, described in
[13]. For the Keller-box method, the first and the second solutions are obtained by setting
different values of η∞ for the same values of parameters, while for the shooting method, they
are obtained by setting different initial guesses for the values of f ′′(0) and θ(0), where all
profiles satisfy the boundary conditions but with different shapes. The results obtained by
both methods are in excellent agreement. Comparisons for the values of f ′′(0) and 1/θ(0)

with those reported by Ramachandran et al [3] for the flat-plate case are also made, and they
are found to be in favorable agreement, as presented in tables 1 and 2.

Figures 2 and 3 present the velocity and temperature profiles, respectively, for λ = 1
(assisting flow), which show that the far-field boundary conditions are satisfied, and thus
support the validity of the numerical results obtained. The velocity and temperature profiles of
valid solutions approach the ambient fluid conditions asymptotically [14]. These figures show
that there exist two different profiles for a particular value of λ, where both of them satisfy
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Figure 2. Velocity profiles f ′(η) for different values of γ when Pr = 1 and λ = 1.
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Figure 3. Temperature profiles θ(η) for different values of γ when Pr = 1 and λ = 1.

the far-field boundary conditions. As in similar physical situation, we postulate that the first
solutions are stable, whereas the second solutions are not. This postulate can be verified by
performing a stability analysis, but this is beyond the scope of the present paper. The second
solutions have regions of reversed flow (see figure 2) and this would seem to invalidate them
as possible asymptotic solutions to which a fully forward flow developing near the leading
edge could evolve. Also, the forced convection limit (λ = 0) is on the first solution and we
expect this solution to be stable, as it is the only solution for this case. Moreover, figure 3
shows that there are regions within the thermal boundary layer where θ(η) < 0. This result
seems to contradict the second law of thermodynamics.

In an experimental work on turbulent boundary layer under strong adverse pressure
gradient, Spangenberg et al [15] have found the dual solutions, depending on the manner in
which the pressure gradient is applied. Another example of non-unique flow is reported by
Aidun et al [16] where they have observed experimentally that the primary steady-state flow
in a through-flow lid-driven cavity was non-unique, and only one of the multiple steady-state
patterns can stabilize in the cavity (see [17, 18]). The first solutions satisfy f ′(η) � 0 and
θ(η) � 0 for all values of η, while the second solutions are characterized by the existence of
flow reversal and negative values of θ(η) within the boundary layer (see figures 2 and 3). We
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Figure 4. Variation of the skin friction coefficient f ′′(0) with λ when Pr = 1.
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Figure 5. Variation of the surface temperature θ(0) with λ when Pr = 1.

note that the existence of reversed flow in the second solutions has been reported by Ridha
[9, 18] and very recently by Ishak et al [19, 20].

The variations of the skin friction coefficient f ′′(0) and the surface temperature θ(0) with
the buoyancy parameter λ for γ = 0, 0.1 and 0.2 are shown in figures 4 and 5, respectively,
both for Pr = 1. These figures show that it is possible to obtain dual solutions of the similarity
equations (8)–(10) also for the assisting flow (λ > 0), apart of those for the opposing flow
(λ < 0), that have been typically reported in the literature (see [2, 3, 4, 7]). For λ > 0, there
is a favorable pressure gradient due to the buoyancy forces, which results in the flow being
accelerated and consequently there is a larger skin friction coefficient than in the non-buoyant
case (λ = 0) or the opposing flow case (λ < 0). For negative values of λ, there is a critical
value λc, with two branches of solutions for λ > λc, a saddle-node bifurcation at λ = λc and
no solutions for λ < λc. These values of λc are presented in table 3.

The boundary layer approximation breaks down at λ = λc; thus we are unable to obtain
further results for λ < λc. Beyond this value, the boundary layer has separated from the
surface. It is evident from figures 4 and 5 that |λc| increases with an increase in the curvature
parameter γ . The range of λ for which the solution exists is larger for γ > 0 (cylinder)
compared to γ = 0 (flat plate). Thus, this demonstrates that a cylinder increases the range
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Table 3. Values of λc for different values of γ when Pr = 1.

γ λc

0 −1.1973
0.1 −1.3879
0.2 −1.5845

of existence of the similarity solutions to the equations (8)–(10) compared to a flat plate, i.e.
the boundary layer separation is delayed for a cylinder. The results shown in figure 5 for the
surface temperature θ(0) demonstrate that, for the second solution, θ(0) becomes unbounded
as λ → 0− and as λ → 0+.

4. Conclusions

We have studied the similarity solutions for the steady mixed convection flow past a vertical
cylinder with prescribed surface heat flux immersed in an incompressible viscous fluid. The
transformed nonlinear ordinary differential equations were solved numerically using two
different methods, namely the Keller-box method and the Runge–Kutta method with the
shooting technique. We discussed the effects of the curvature parameter γ and the buoyancy
parameter λ on the fluid flow and heat transfer characteristics. A new feature to emerge
from our results is the existence of a reversed flow region, in addition to a dual solution in
the assisting flow regime (λ > 0). In the assisting flow case, solutions could be obtained
for all positive values of λ, while in the opposing flow case, the solution terminated with a
saddle-node bifurcation at λ = λc (λc < 0). The value of |λc| increases with an increase in
γ , thus the curvature parameter increases the range of existence of the similarity solutions,
which in turn delays the boundary layer breakdown. Hence, the boundary layer separation is
delayed for a cylinder (γ > 0) compared to a flat plate (γ = 0).
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